
Software Engineering: A Personal
Reflection

Yu Lei (雷羽)
University of Texas, Arlington

June 2014

What is THE best job in the US in 2014?

US News & World Report: Software Developer

Software Developer

 Consistent Ranking

•  US News & World Reports
–  2014: 1st Best Job
–  2013: 7th Best Job (1st in Technology)
–  2012: 1st Best Job

•  CareerCast.com
–  2014: 7th Best Job
–  2013: 3rd Best Job
–  2012: 1st Best Job

•  Based on hiring prospects, salary, job
satisfaction, and unemployment rates

Outline

•  What is SwE and Why?
•  What is SwE Research?
•  Major Challenges in SwE
•  How to Conduct SwE Research?

Software Engineering

•  Software has become pervasive in modern
society
–  A fundamental driver to technology and society

advancement
•  How to build better software faster, especially

at scale?
–  Requirements, analysis, design, coding, testing,

maintenance, configuration, documentation,
deployment, and etc.

Software Quality

•  THE priority concern in software engineering
–  No quality, no engineering!
–  Software malfunctions cost billions of dollars every

year, and have severe consequences in a safe-
critical environment

•  An important factor that distinguishes a
software product from its competition
–  The feature set tends to converge between similar

products

What is Quality?

•  As perceived by the user
–  Functionally correct, secure, robust, reliable,

usable, fast response, high throughput, …
•  As perceived by the developer

–  Code that is well-structured, easy to understand,
easy to change, easy to extend, easy to test, …

•  Software = program + documentation
–  Concise, well-written, consistent, up-to-date

Engineering vs Science

•  Engineering solutions are not necessarily
optimal solutions

•  More emphasis on quality, cost, and scale
than optimality

•  The KISS Principle: Avoid unnecessary
complexity, sometimes even at the cost of
optimal performance.

Engineering vs Art

•  Unlike art, quality of an engineering product
should be not depend on the person(s) who
build the product.

•  Some people do not like the term of “software
engineering”. Why?

Outline

•  What is SwE and Why?
•  What is SwE Research?
•  Major Challenges in SwE
•  How to Conduct SwE Research?

What is it?

•  Develop concepts, principles, models,
methods, techniques, and tools that make
software engineers more productive

•  In other words, SwE Research helps software
engineers to do their job better …

•  … and in turn software engineers help other
people to do their jobs better.

On-the-large vs On-the-small

•  On-the-large: Manage the overall production
process
–  Software process and methodology
–  Project management, i.e., planning & scheduling

•  On-the-small: Focus on the “how-to” of
individual tasks
–  Requirements engineering, design patterns,

design verification, program analysis, debugging,
testing, formal methods, and others

SwE vs Compiler/Languages

•  Similar in terms of both dealing with code
(instead of data)

•  However, SwE reasons about semantic
properties …

•  … whereas Compiler/languages analyzes
code in the syntactic domain

•  They are moving closer to each other
–  e.g., some compiler plugins are performing

semantic analysis, while many SwE techniques
need to analyze syntactic structures

SwE vs System

•  Similar in terms of both dealing with how to
build software systems

•  However, SwE is about the general software
production process, and is typically
application-independent…

•  … whereas System is typically about how to
build systems of a specific type/domain, and
is mainly concerned at the design level

SwE vs Algorithm

•  Similar in terms that both need to do problem
solving

•  However, SwE is about the software
production process/activities, whereas
Algorithm deals with individual “application”
problems

•  Also, SwE is ultimately about software
implementations, whereas Algorithm is more
about “abstract” solutions.

SwE vs Security

•  Security is an important aspect of quality.
•  Software security is mainly about security of

“software” implementation…
–  Typically assume there exists a secure design/

protocol/mechanism
•  … whereas (traditional) Security is mainly

about security in the design level

Code vs Data

•  To a large extent, SwE is about analysis of
code, whereas many other CS areas are
about analysis of data
–  e.g., database, network, data mining, machine

learning, and others
•  Structure of code is different from structure of

data…
•  Also, code has dynamic behavior, whereas

data is largely static.

Defining Characteristics

•  Deals with semantics instead of syntax
–  Semantic reasoning is often undecidable!!

•  Analyzes code instead of data
–  How to analyze the runtime behavior that may be

displayed by (static) code?
•  Consider the general software production

process/activities, instead of solving individual
problems.

•  The ultimate goal is to ensure quality of
implementation.

Outline

•  What is SwE and Why?
•  What is SwE Research?
•  Major Challenges in SwE
•  How to Conduct SwE Research?

Software Process

•  How to manage activities in the software
production lifecycle?
–  When to perform what activities?

•  Technically, how to balance between
structure/discipline and flexibility?
–  Structure/discipline is important for quality control

and for repeatability, but software is complex and
dynamic

•  The trend seems to be incremental, iterative,
and feedback-based control.

Requirements Engineering

•  How to build the right system (vs build the
system right)?

•  One of the most challenging problems
–  Often customers do not know what they want.

•  How to help customers spell out all the
requirements?

•  How to make sure requirements are valid and
consistent with each other?

•  How to describe requirements in a way that is
amenable to automated analysis?

Software Design

•  Abstraction that contains important decisions.
But what decisions are or are not important?

•  How to measure quality of a design? Given
two designs, which one is better?
–  A good design should not only work for the

present, but also facilitate the future.
•  How to create a quality design in a

systematic, repeatable manner?
–  Design patterns help to capture best practices.

•  How to verify correctness of a design?

Defect Detection

•  How to ensure that software is implemented
without errors?

•  Two basic approaches
–  Static analysis: analyze code without execution
–  Dynamic analysis or testing: execute code and

observe the runtime behavior
•  Static analysis can be fast, but suffers false

positives/negatives
–  Try to automate code inspection/review, but

essentially an undecidable problem. How to
reduce false positives/negatives?

Defect Detection (2)

•  Testing is probably the most widely used
approach in practice
–  The key is to be systematic, typically through the

notion of coverage
•  Three technical problems:

–  How to select test inputs? How to automatically
execute tests? How to evaluate test runs?

•  Combine static analysis and testing
–  For example, collect information about program

structure to help test generation

Formal Methods

•  A mathematic treatment of software
engineering
–  Precise, rigorous, and provides deep insights

•  How to formally describe and reason about a
system and its properties?
–  Deductive reasoning vs model checking

•  How to check correctness of implementations
directly, i.e., not only designs?

•  How to make formal methods accessible to
average engineers?

Empirical SwE

•  Various SwE methods and techniques have
been developed.
–  Are they really effective? How do they compare to

each other?
•  Can be time-consuming, and must follow a

rigorous procedure
•  How to select a set of subject programs and

faults that are representative of true practice?
–  Benchmark programs are preferred but may not

be always available

Outline

•  What is SwE and Why?
•  What is SwE Research?
•  Some SwE Research Challenges
•  How to Conduct SwE Research?

What is Good Research?

•  Novel idea and useful
–  The Aha Effect: It is so simple, and why didn’t I

think of this?
–  Must address a problem of significance

•  Solid support
–  Ideas alone do not work
–  Rigorous reasoning and experimental results

•  Excellent presentation
–  Make it as clear as possible, instead of “you figure

it out”

Major Tasks

•  Literature search: Obtain a big picture of
“what is out there”

•  Problem formulation: Clearly define the input
and output

•  Propose your idea: What is the trick?
•  Prototype & experiments: Provide evidence

that it will actually work
•  Publication: Get your work known to the

community.

Literature Search

•  Critical to justify novelty
–  Many papers are rejected due to inadequate

discussion on related work
•  Where to search

–  Online databases: ACM Digital Library, IEEE
Xplore, ScienceDirect, and SpringerLink

–  Google Scholar, Citeseer, Google

•  Browse recent proceedings (5 to 10 years) of
major conferences

•  Book-keeping: create a web page which
collects all the relevant resources

How to read papers

•  Major questions to keep in mind
–  What is the problem and why? What is the

technical challenge?
–  What is the main idea of the proposed solution?

What are the major results?
–  How does the work compare to others?
–  What is your opinion on the strength/weakness of

the work?
•  Try to finish reading a paper in its entirety

before reading its references
•  No shortcut!

Research vs Development

•  Development: We know the problem, and
often the solution, but take time to implement/
optimize the solution

•  Research: We do not even know the problem,
not to mention the solution

•  How to make progress?
–  Clearly define the input and output, systematic

exploration of possible ideas, planning & schedule
based on deliverables

•  Don’t give up easily; if you do, try to have a
good justification

Experiments

•  Experimental design
–  Research questions, subject programs, metrics
–  What are the major factors that could affect the

effectiveness of your approach?
–  Always keep COST in mind!

•  Baseline and competing work
–  What is the intuitive approach? How does your

work compare to other similar work?
•  Make sense out of numbers

–  Not only present the data, but also explain why
such data has been presented

Experiments (2)

•  Threats to validity
–  Thinking about this helps to improve your design
–  Critical from the 3rd perspective
–  How have you tried to reduce the threats

•  Make tables self-contained
•  Any inconsistencies or surprise results need

to be explained

Be Patient!

•  Good research takes time
–  Years of accumulation

•  Software engineering typically has a longer
publication cycle
–  Code can be more difficult to analyze than data,

due to its internal structure and dynamic behavior
–  Building prototype tools and conducting empirical

studies can be time consuming
•  But it can be very rewarding

–  Make impact in real life

Quotes from Dr. Parnas

Extracted from his ACM Fellow Profile
http://www.sigsoft.org/SEN/parnas.html

Education is what remains after one has
forgotten everything he learned in school.

- Albert Einstein

