CSE_UTA

Software Engineering: A Personal
Reflection

Yu Lei ()
University of Texas, Arlington
June 2014

CSE_UTA

What is THE best job in the US in 20147

US News & World Report: Software Developer

CSE_UTA

Software Developer

Best Technology Jobs

Software Developer

Job Profile

Overview

Salary
Reviews & Advice

Job Listings

Civil Engineer
Computer Programmer
Computer Support Specialist

Computer Systems
Administrator

Computer Systems Analyst
Database Administrator
Information Security Analyst
IT Manager

Mechanical Engineer

Web Developer

O

Overall Score * % % % %

Show Jobs Near: 75007

Software developers have their
fingerprints all over our lives.
That alarm clock app that
you from a dead sleep this
morning was designed by at les
one software developer. The host
of applications you fire up on your computer when you arrive to the
office? Yes, software developers had a big hand in shaping those,
too. From the mobile app you use to check your bank account
balance to the games you play on your tablet to unwind, software
developers are along for the ride thanks to their amazing code
creations.

This Job is Ranked in

Best Technology Jobs #1

The 100 Best Jobs #1

CSE_UTA Consistent Ranking

 US News & World Reports
— 2014: 1st Best Job
— 2013: 7t Best Job (1t in Technology)
— 2012: 1st Best Job

« CareerCast.com
— 2014: 7t Best Job
— 2013: 3" Best Job
— 2012: 1st Best Job

« Based on hiring prospects, salary, job
satisfaction, and unemployment rates

CSE_UTA Outline

 What is SWE and Why?

 What is SWE Research?

* Major Challenges in SWE

 How to Conduct SwWE Research?

CSE_UTA Software Engineering

« Software has become pervasive in modern
society
— A fundamental driver to technology and society
advancement
 How to build better software faster, especially
at scale?
— Requirements, analysis, design, coding, testing,

maintenance, configuration, documentation,
deployment, and etc.

CSEUTA Software Quality

« THE priority concern in software engineering
— No quality, no engineering!

— Software malfunctions cost billions of dollars every
year, and have severe consequences in a safe-
critical environment

« An important factor that distinguishes a
software product from its competition

— The feature set tends to converge between similar
products

CSE_UTA What is Quality?

* As perceived by the user

— Functionally correct, secure, robust, reliable,
usable, fast response, high throughput, ...

* As perceived by the developer

— Code that is well-structured, easy to understand,
easy to change, easy to extend, easy to test, ...

« Software = program + documentation
— Concise, well-written, consistent, up-to-date

CSECUTA Engineering vs Science

* Engineering solutions are not necessarily
optimal solutions

* More emphasis on quality, cost, and scale
than optimality

« The KISS Principle: Avoid unnecessary
complexity, sometimes even at the cost of
optimal performance.

CSE_UTA Engineering vs Art

« Unlike art, quality of an engineering product
should be not depend on the person(s) who
build the product.

« Some people do not like the term of “software
engineering”. Why?

CSE_UTA Outline

 What is SwWE and Why?

 What is SWE Research?

* Major Challenges in SWE

 How to Conduct SwWE Research?

CSE_UTA What is it?

* Develop concepts, principles, models,
methods, techniques, and tools that make
software engineers more productive

* |In other words, SwE Research helps software
engineers to do their job better ...

« ... and in turn software engineers help other
people to do their jobs better.

CEWTA On-the-large vs On-the-small

* On-the-large: Manage the overall production
process
— Software process and methodology
— Project management, i.e., planning & scheduling

* On-the-small: Focus on the “how-to” of
iIndividual tasks
— Requirements engineering, design patterns,

design verification, program analysis, debugging,
testing, formal methods, and others

cstutAa SwE vs Compiler/Languages

« Similar in terms of both dealing with code
(instead of data)

« However, SWE reasons about semantic
properties ...

* ... whereas Compiler/languages analyzes
code Iin the syntactic domain

* They are moving closer to each other

— e.g., some compiler plugins are performing
semantic analysis, while many SwE techniques
need to analyze syntactic structures

CSEUTA SWE vs System

« Similar in terms of both dealing with how to
build software systems

 However, SWE is about the general software
production process, and is typically
application-independent...

« ... Whereas System is typically about how to
build systems of a specific type/domain, and
IS mainly concerned at the design level

CSE_UTA SWE vs Algorithm

« Similar in terms that both need to do problem
solving

 However, SWE is about the software
production process/activities, whereas
Algorithm deals with individual “application”
problems

* Also, SwE is ultimately about software
Implementations, whereas Algorithm is more
about “abstract” solutions.

CSE_UTA SWE vs Security

« Security is an important aspect of quality.
« Software security is mainly about security of
“software” implementation...

— Typically assume there exists a secure design/
protocol/mechanism

« ... Whereas (traditional) Security is mainly
about security in the design level

CSE_UTA Code vs Data

« To a large extent, SwE is about analysis of
code, whereas many other CS areas are
about analysis of data

— e.g., database, network, data mining, machine
learning, and others

« Structure of code is different from structure of
data...

* Also, code has dynamic behavior, whereas
data is largely static.

CSE_UTA Defining Characteristics

* Deals with semantics instead of syntax
— Semantic reasoning is often undecidable!!

* Analyzes code instead of data
— How to analyze the runtime behavior that may be
displayed by (static) code?
« Consider the general software production

process/activities, instead of solving individual
problems.

« The ultimate goal is to ensure quality of
Implementation.

CSE_UTA Outline

 What is SwWE and Why?

 What is SWE Research?

* Major Challenges in SWE

 How to Conduct SwWE Research?

CSE UTA Software Process

 How to manage activities in the software
production lifecycle?
— When to perform what activities?

* Technically, how to balance between
structure/discipline and flexibility?

— Structure/discipline is important for quality control
and for repeatability, but software is complex and
dynamic

 The trend seems to be incremental, iterative,
and feedback-based control.

GEUTA Requirements Engineering

* How to build the right system (vs build the
system right)?

* One of the most challenging problems
— Often customers do not know what they want.

 How to help customers spell out all the
requirements?

 How to make sure requirements are valid and
consistent with each other?

* How to describe requirements in a way that is
amenable to automated analysis?

CSELUTA Software Design

« Abstraction that contains important decisions.
But what decisions are or are not important?

 How to measure quality of a design”? Given
two designs, which one is better?

— A good design should not only work for the
present, but also facilitate the future.

* How to create a quality design in a
systematic, repeatable manner?

— Design patterns help to capture best practices.
* How to verify correctness of a design?

CSE_UTA Defect Detection

 How to ensure that software is implemented
without errors?

 Two basic approaches
— Static analysis: analyze code without execution
— Dynamic analysis or testing: execute code and
observe the runtime behavior
« Static analysis can be fast, but suffers false
positives/negatives

— Try to automate code inspection/review, but
essentially an undecidable problem. How to
reduce false positives/negatives?

CSE UTA Defect Detection (2)

* Testing is probably the most widely used
approach in practice

— The key is to be systematic, typically through the
notion of coverage

* Three technical problems:

— How to select test inputs? How to automatically
execute tests? How to evaluate test runs?

« Combine static analysis and testing

— For example, collect information about program
structure to help test generation

CSE_UTA Formal Methods

* A mathematic treatment of software
engineering
— Precise, rigorous, and provides deep insights
 How to formally describe and reason about a
system and its properties?
— Deductive reasoning vs model checking

* How to check correctness of implementations
directly, i.e., not only designs?

« How to make formal methods accessible to
average engineers?

CSE_UTA Empirical SWE

« Various SWE methods and techniques have
been developed.

— Are they really effective”? How do they compare to
each other?

« Can be time-consuming, and must follow a
rigorous procedure

* How to select a set of subject programs and
faults that are representative of true practice?

— Benchmark programs are preferred but may not
be always available

CSE_UTA Outline

 What is SwWE and Why?
 What is SWE Research?
« Some SWE Research Challenges
 How to Conduct SwE Research?

CSE_UTA What is Good Research?

 Novel idea and useful

— The Aha Effect: It is so simple, and why didn't |
think of this?

— Must address a problem of significance

« Solid support

— ldeas alone do not work

— Rigorous reasoning and experimental results
« EXxcellent presentation

— Make it as clear as possible, instead of “you figure
it out”

CSE_UTA Major Tasks

 Literature search: Obtain a big picture of
“what is out there”

* Problem formulation: Clearly define the input
and output

* Propose your idea: What is the trick?

* Prototype & experiments: Provide evidence
that it will actually work

* Publication: Get your work known to the
community.

CSE_UTA [iterature Search

 Critical to justify novelty

— Many papers are rejected due to inadequate
discussion on related work

« Where to search

— Online databases: ACM Digital Library, IEEE
Xplore, ScienceDirect, and SpringerLink

— Google Scholar, Citeseer, Google

« Browse recent proceedings (5 to 10 years) of
major conferences

* Book-keeping: create a web page which
collects all the relevant resources

CSELUTA How to read papers

* Major questions to keep in mind

— What is the problem and why? What is the
technical challenge?

— What is the main idea of the proposed solution?
What are the major results?

— How does the work compare to others?
— What is your opinion on the strength/weakness of
the work?
* Try to finish reading a paper in its entirety
before reading its references

 No shortcut!

EUTA Research vs Development

* Development: We know the problem, and
often the solution, but take time to implement/
optimize the solution

* Research: We do not even know the problem,
not to mention the solution

« How to make progress?

— Clearly define the input and output, systematic
exploration of possible ideas, planning & schedule
based on deliverables

« Don’t give up easily; if you do, try to have a
good justification

CSECUTA Experiments

* Experimental design
— Research questions, subject programs, metrics

— What are the major factors that could affect the
effectiveness of your approach?

— Always keep COST in mind!

» Baseline and competing work

— What is the intuitive approach? How does your
work compare to other similar work?

« Make sense out of numbers

— Not only present the data, but also explain why
such data has been presented

CSE_UTA Experiments (2)

* Threats to validity
— Thinking about this helps to improve your design
— Critical from the 3™ perspective
— How have you tried to reduce the threats

« Make tables self-contained

* Any inconsistencies or surprise results need
to be explained

CSE_UTA Be Patient!

e Good research takes time
— Years of accumulation

« Software engineering typically has a longer
publication cycle

— Code can be more difficult to analyze than data,
due to its internal structure and dynamic behavior

— Building prototype tools and conducting empirical
studies can be time consuming

« But it can be very rewarding
— Make impact in real life

CSE_UTA Quotes from Dr. Parnas

Which computer-related area i. in need @ investment by government, business or education?

that most students receive a pooriy andom mtroductlon to software issues. They learn a lot of folklore
that is too vague too apply and a lot of theory that seems (and often is) irrelevant. Second, we must make sure that
people do get a professional education. In a world where you need a license to be a barber, anybody can get a job
writing software without any credentials. In the last few years | have devoted much of my time to developing an
educational program for engineers who are specialists in software, a program that can be accredited by the

professional engineering societies.

| would advise students to pay more attention to the fundamental ideas rather than the latest technology. The
technology will be out-of-date before they graduate. Fundamental ideas never get out of date. However, what worries

Extracted from his ACM Fellow Profile
http://www.sigsoft.ore/SEN/parnas.html

CSE UTA

Education is what remains after one has
forgotten everything he learned in school.

- Albert Einsteln

